Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting.

نویسندگان

  • Monica Barroso
  • Camilo A Mesa
  • Stephanie R Pendlebury
  • Alexander J Cowan
  • Takashi Hisatomi
  • Kevin Sivula
  • Michael Grätzel
  • David R Klug
  • James R Durrant
چکیده

This paper addresses the origin of the decrease in the external electrical bias required for water photoelectrolysis with hematite photoanodes, observed following surface treatments of such electrodes. We consider two alternative surface modifications: a cobalt oxo/hydroxo-based (CoO(x)) overlayer, reported previously to function as an efficient water oxidation electrocatalyst, and a Ga(2)O(3) overlayer, reported to passivate hematite surface states. Transient absorption studies of these composite electrodes under applied bias showed that the cathodic shift of the photocurrent onset observed after each of the surface modifications is accompanied by a similar cathodic shift of the appearance of long-lived hematite photoholes, due to a retardation of electron/hole recombination. The origin of the slower electron/hole recombination is assigned primarily to enhanced electron depletion in the Fe(2)O(3) for a given applied bias.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrodeposited Co-Pi Catalyst on α-Fe2O3 Photoanode for Water-Splitting Applications

Optoelectronic properties of hematite (α-Fe2O3) as a photoanode and the required over-potential in photo-assisted water splitting has been improved by presence of Co-Pi on its surface. In order to increase the lifetime of the photogenerated holes and lower the applied bias, cobalt-phosphate (Co-Pi) on nanostructured α-Fe2O3 by electrodeposition was de...

متن کامل

CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation

In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe2O3/TiO2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe2O3/TiO2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broaden...

متن کامل

Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy.

Transient absorption spectroscopy on the μs-s time scale is used to monitor the yield and decay dynamics of photogenerated holes in nanocrystalline hematite photoanodes. In the absence of a positive applied bias, these holes are observed to undergo rapid electron-hole recombination. The application of a positive bias results in the generation of long-lived (3 ± 1 s lifetime) photoholes.

متن کامل

Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting

Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. ...

متن کامل

Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting

Metal oxide semiconductors are promising photoelectrode materials for solar water splitting due to their robustness in aqueous solutions and low cost. Yet, their solar-to-hydrogen conversion efficiencies are still not high enough for practical applications. Here we present a strategy to enhance the efficiency of metal oxides, hetero-type dual photoelectrodes, in which two photoanodes of differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 39  شماره 

صفحات  -

تاریخ انتشار 2012